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Abstract: OCT angiography is a functional extension of OCT that allows for non-invasive 
imaging of retinal microvasculature. However, most current OCT angiography systems are 
tabletop systems that are typically used for imaging compliant, seated subjects. These systems 
cannot be readily applied for imaging important patient populations such as bedridden 
patients, patients undergoing surgery in the operating room, young children in the clinic, and 
infants in the intensive care nursery. In this manuscript, we describe the design and 
development of a non-contact, handheld probe optimized for OCT angiography that features a 
novel diverging light on the scanner optical design that provides improved optical 
performance over traditional OCT scanner designs. Unlike most handheld OCT probes, which 
are designed to be held by the side of the case or by a handle, the new probe was optimized 
for ergonomics of supine imaging where imagers prefer to hold the probe by the lens tube. 
The probe’s design also includes an adjustable brace that gives the operator a point of contact 
closer to the center of mass of the probe, reducing the moment of inertia around the operator’s 
fingers, facilitating stabilization, and reducing operator fatigue. The probe supports high-
speed imaging using a 200 kHz swept source OCT engine, has a motorized stage that 
provides +10 to −10 D refractive error correction and weighs 700g. We present initial 
handheld OCT angiography images from healthy adult volunteers, young children during 
exams under anesthesia, and non-sedated infants in the intensive care nursery. To the best of 
our knowledge, this represents the first reported use of handheld OCT angiography in non-
sedated infants, and the first handheld OCT angiography images which show the clear 
delineation of key features of the retinal capillary complex including the foveal avascular 
zone, peripapillary vasculature, the superficial vascular complex, and the deep vascular 
complex. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical coherence tomography (OCT) is a non-invasive imaging modality that enables in vivo 
cross-sectional structural imaging of living biological tissues with micron scale resolution 
[1,2]. Due to these characteristics, OCT has become the clinical standard of care for diagnosis 
and monitoring of adult retinal diseases [3]. However, most OCT systems are tabletop 
systems which require a compliant, seated subject. These systems are difficult if not 
impossible to use on noncompliant or supine subjects such as bedridden patients, patients 
undergoing surgery in the operating room, young children, and infants. Handheld OCT (HH-
OCT) systems have been used to bring point of care imaging to these important patient 
populations, including pre-term infants born at risk for blinding diseases such as retinopathy 
or prematurity (ROP) [4–12]. While longitudinal bedside imaging in the intensive care nursey 
(ICN) can provide valuable diagnostic information about the progression of the disease state, 
the constraints of the ICN environment such as space-restricted neonatal incubators further 
motivates the use of compact handheld probes. 
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OCT angiography (OCTA) is a functional extension of OCT that employs changes in 
speckle caused by blood flow as an endogenous contrast agent to image retinal 
microvasculature [13–20]. Unlike fluorescein angiography (FA), the current gold standard for 
retinal vascular imaging, OCTA does not require the intravenous injection of an exogenous 
contrast agent and provides higher resolution, depth resolved images of the retinal vasculature 
[19]. OCTA imaging of adult retinal diseases is area of active research in ophthalmology and 
has provided insights into the pathogenesis of many retinal diseases including age-related 
macular degeneration, glaucoma, and diabetic retinopathy [21–29]. While many pediatric 
diseases, such as ROP, have a vascular etiology and occur during a period of rapid retinal 
vascular growth [30], most OCTA systems are table top systems that cannot not be easily 
used to image infants in a supine position. These systems have been used to image infants, but 
require removing the infant from the incubator, holding the infant up to the chin rest, and 
applying topical anesthesia [31]. Portable, armature mounted OCTA systems (Investigational 
Spectralis Flex Module, Heidelberg Engineering, Heidelberg, Germany) and microscope 
integrated OCT systems with OCTA capabilities have been used recently to image supine 
patients and children during exams under anesthesia (EUAs) [32–37] but these systems are 
bulky and difficult to align on a non-cooperative subject. The development of a handheld 
OCTA (HH-OCTA) system could enable point of care, longitudinal OCTA imaging and 
allow for new insights into retinal vascular development and pediatric retinal diseases. 
Towards this goal, several groups have reported HH-OCTA systems. These systems include a 
contact system used to image infants during EUAs or after surgery [38,39], two non-contact 
OCT systems that have been used to image adult subjects [40,41], and a handheld probe 
designed to image the oral mucosa [42]. In this manuscript, we present preliminary results 
from our non-contact HH-OCTA system, including results from healthy adult volunteers, 
young children undergoing EUAs, and awake infants in the ICN or during clinic visits. To the 
best of our knowledge the images reported in this manuscript are the first HH-OCTA taken of 
non-sedated infants and the first HH-OCTA which show clear delineation of key features of 
the retinal capillary complex including the foveal avascular zone (FAZ), peripapillary 
vasculature, the superficial vascular complex (SVC), and the deep vascular complex (DVC). 

2. Methods 

2.1 Optical design of the HH-OCTA probe 

Our group has previously reported several HH-OCT probes for various clinical applications 
[43–45] including an ultra-compact swept-source OCT probe for ICN imaging [46]. 
However, the microelectromechanical systems scanner mirror used to minimize weight of this 
probe had a limited frequency response (~150 Hz B-scans) when driven outside of resonant 
mode. In the new probe we used galvanometric scanners (Scannermax, Orlando, FL) to 
support the high speed scanning (250-500 Hz B-scans) required for OCTA [47]. The probe 
was designed to have a 30° field of view on the retina, ± 10 diopter refractive error correction, 
and the ergonomics were designed to facilitate supine imaging. 

Traditionally, OCT systems employ collimated light incident on the lateral beam scanners 
and use a 4F relay telescope to image the scanners into the pupil. We previously reported an 
optical configuration using converging light on the scanner to shorten the length of the relay 
telescope, however this system was limited to ~16° field of view and required the use of 
custom lenses [48]. To improve optical performance and increase the diffraction limited field 
of view, we used a novel design which employs diverging light on the scanners and a longer 
(approximately 5F long) relay telescope to image the scanners into the pupil. Schematics for 
both a standard 4F and our novel “5F” retinal OCT scanner design are shown in Fig. 1. In the 
4F design, the intermediate image plane is designed to be as close to telecentric as possible, 
while in the 5F design the diverging light on the scanner deliberately induces field curvature 
in the intermediate image plane. Once imaged onto the retina, the additional field curvature 
creates a retinal image plane that better matches the curvature of the retina minimizing 
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During EUAs, FA imaging (Retcam3, Natus Medical Incorporated, Pleasanton, CA), was 
performed as part of routine clinical care. Total imaging time was limited to 15 minutes for 
each subject. Optical power was set to less than 1.8 mW on the cornea, which is less than the 
ANSI Z136.1 standard for 1060 nm light [63]. All human subjects research was performed 
under protocols approved by the Duke University institutional review board in accordance 
with the Declaration of Helsinki. 

3. Results 

The high speed and ergonomic grip of the HH-OCTA probe helped facilitate regular 
structural OCT imaging in the ICN. During imaging, the probe was positioned vertically 
above the eye of the subject with the imager holding the probe by the tip using the braced 
position (Fig. 6). Over 63 imaging sessions (across 25 different subjects) in the ICN and 
clinic, the HH-OCTA probe was able to capture structural images of the optic nerve and fovea 
of the right eye (the first eye imaged) in 98.4% (62 of 63) of the imaging sessions. In the left 
eye, the probe was able to capture images in 90.5% (57 of 63) of the imaging sessions. In six 
imaging sessions, imaging was only performed in the right eye due to infant restlessness or 
pre-existing health concerns. Successful imaging was determined by the imager (who is also 
an expert grader) upon review of the captured images. OCTA images were qualitatively 
evaluated after post processing and images were labeled as high quality if capillary level 
vasculature or vascular pathology was visible in a significant part of the scan. During EUAs 
high quality OCTA scans were obtained in 100% (8 of 8) of patients. OCTA imaging was not 
attempted in 2 of the 14 infants imagined in the ICN due to infant restlessness or pre-existing 
health concerns. High quality OCTA images were obtained in 8 out of the remaining 12 
subjects. In these 8 subjects, high quality OCTA images were obtained in 69.2% (27 of 39) 
imaging sessions. While OCTA imaging was attempted as early as 30 weeks PMA in two of 
these subjects, due obstruction of the eye by the tubing from a continuous positive airway 
pressure mask on the infant’s face, we were unable to obtain OCTA images from these infants 
until they reached 33 weeks PMA. Eleven infants were imaged in the outpatient clinic with up 
to two visits each. These infants ranged from one to sixteen months corrected age. High 
quality OCTA images were obtained from 2 of the 11 infants imaged in clinic (both 
approximately 1 month corrected age). The older infants (three to sixteen months corrected 
age) had structural OCT but OCTA was not attempted (7 of the 11 infants). Selected volume 
renders and B-scans from ICN imaging are shown in Fig. 7. These images demonstrate the 
ability of the probe to capture clinically relevant features including the foveal depression, 
infant cystoid macular edema (CME), and peripheral preretinal neovascular elevations in an 
infant with ROP. While features such as preretinal neovascular elevations are visible in cross-
sectional imaging, the 3D context provided by volumetric imaging allows for enhanced 
visualization of 3D structures such as CME, large superficial retinal vasculature, the extent of 
preretinal neovascular tissues, and structural changes at the vascular/avascular junction in 
infants with ROP. However, as can be seen in Fig. 7(b), motion artifacts can distort surface of 
the retina and other anatomical features. 

Initial HH-OCTA imaging to assess the OCTA capabilities of the system was performed 
in healthy adult volunteers lying in a supine position (Fig. 8). These images show clear 
visualization of the capillaries forming the FAZ, peripapillary vasculature emerging radially 
from the optic disc, and retinal capillaries in a region of retina nasal to the optic disc. These 
images also demonstrate the difference between artifacts caused by saccades and hand 
motion. Saccades manifested as narrow streaks on the angiograms with sharp discontinuities 
between the vasculature on each side of the artifact (red arrows in Fig. 8) [55,64]. In many of 
the OCTA images acquired, there were also broader artifacts with wavy but continuous 
vasculature (yellow arrows in Fig. 8). Due to their presence in images of cooperative, fixating 
adults, we believe that these artifacts result from washout of the OCTA signal caused by the 
operator’s hand motion causing bulk decorrelation of the background tissue. 
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OCTA images and while a tracking system could allow for compensation for some of the 
motion, quite often this motion is significant enough that it requires the operator to 
completely reset the position of the probe, limiting the utility of tracking. Since the exam with 
the HH-OCTA probe is non-invasive (it does not require the use of an eyelid speculum or 
topical anesthetic drops, and it uses non-visible light unlike a traditional indirect retinal exam) 
we found that many young infants remain calm throughout the exam and some will even fall 
asleep. While their gaze frequently moves, when they are calm their gaze will eventually 
remain still for short periods. Instead of including alignment aids or tracking we focused on 
patient and imager comfort by optimizing the probe’s ergonomics for supine imaging. This 
facilitates sustained imaging where the imager is able to quickly make adjustments for eye 
motion. Real time display of the OCT data allows for the imager to identify when the infant’s 
gaze has stabilized and the longer OCTA scans can be taken. This approach allowed us to 
take OCTA acquisitions which were three to six seconds long. However, we observed that 
older infants had greater baseline movement during the HH-OCTA exams. For example, 6 to 
9 month old infants were substantially more active and difficult to image than a newborn. 
While OCTA is often not possible in these active infants, the ergonomics and high speed of 
the system enables consistent structural OCT imaging. 

5. Conclusion 

We developed an optically novel, ergonomic, 200 kHz HH-OCTA probe optimized for 
supine, portable, non-contact imaging. The probe weighs 700g, has −10D to +10D refractive 
error correction, and a 30° diffraction limited field of view. HH-OCTA imaging was 
performed in healthy adult volunteers, pediatric patients undergoing exams under anesthesia, 
and awake infants in the ICN/clinic. The OCTA images reported in this manuscript are the 
first HH-OCTA taken of non-sedated infants and the first HH-OCTA images to show depth-
resolved retinal microvasculature and microvascular abnormalities. These images show 
vascular abnormalities in close proximity to pathological structures and we believe that 
further imaging with this probe will lead to new insights into the development and pathology 
of the pediatric retina. 
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